The line a2x+ay+1=0 is normal to the curve xy=1. Find possible values of a∈R.
Rewrite: y=−ax−1a → slope = −a
xy=1⇒dydx=−yx Slope of normal = xy
−a=xy⇒x=−ay
xy=1⇒(−ay)(y)=1⇒y2=−1a
For real y, we need a<0
a<0
Given Equation: x2+2x−4y2+8y−7=0
Step 1: Complete the square
⇒ (x+1)2−4(y−1)2=4
Rewriting: (x+1)24−(y−1)21=1
This is a horizontal hyperbola with:
✅ Foci: (−1±√5, 1)
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.